数学Ⅰ
(1)展開と因数分解
①知っておきたい展開
②三次の因数分解
③複二次式の因数分解
④少し高度な因数分解
⑤対称式
⑥知っておきたい式変形
(2)実数
☆数の分類
①複素数:a+biと表される数
②純虚数:複素数の実部(a)が0の数
③実数:複素数の中で虚部(b)が0の数
④有理数:整数p, qを使ってq/pと表すことができる数
※循環小数は有理数
※有理数どうしで四則演算(+、-、×、÷)をしても有理数である。
⑤無理数:有理数ではない実数
⑥整数は、負の整数・0・正の整数(自然数)に分けられる。
※0は自然数ではない。
⑦自然数は、1・素数・合成数に分けられる。
※1は素数ではない。
⑧素数:約数が2つの自然数
※2は唯一の偶数の素数(2以外の素数は全て奇数)
⑨合成数:素数の積でできている自然数
(3)1次不等式
①絶対値の等式
※xが絶対値の中にあるときのみ使える。絶対値の外にxが含まれているときは場合分けをする。
②絶対値の不等式
※xが絶対値の中にあるときのみ使える。絶対値の外にxが含まれているときは場合分けをする。
(4)集合
①a∊A:aは集合Aの要素
②A⊂B:AはBの部分集合
③A∩B:AかつB、AとBの共通部分
④A∪B:AまたはB、AとBの和集合
⑤Aの否定、Aではない
⑥和集合の求め方
⑦ド・モルガンの法則
⑧3つの和集合
(A∪B∪C)=A+B+C−(A∩B)−(B∩C)−(C∩A)+(A∩B∩C)
(5)命題
①「p⇒qが真」⇔ P⊂Q
②反例の見つけ方
pならばqの反例:pを満たし、かつ、qを満たさないもの
③pはqであるための○○条件
・p⇒qが真:十分条件
・q⇒pが真:必要条件
・p⇒qが真、かつ、q⇒pが真:必要十分条件(同値)
④対偶
(6)二次関数・二次方程式・二次不等式
→二次関数(二次方程式・二次不等式含む)の解説・授業・公式・演習問題一覧
①最大・最小を考えるときに縦に引く3つの線
→二次関数の最大と最小を考えるときに引くべき3つの線解説授業
ⅰ)定義域
ⅱ)定義域の中央
ⅲ)軸
→ⅰ)~ⅲ)を引いた後、放物線をかけば、どこが最大・最小か分かるようになる。
→二次関数の最大と最小を考えるときに引くべき3つの線解説授業
②場合分け
1.下に凸で最小値
ⅰ)軸が範囲の左、ⅱ)軸が範囲の中、ⅲ)軸が範囲の右
2.下に凸で最大値
ⅰ)軸が範囲の真ん中より左、ⅱ)軸が範囲の真ん中と一致、ⅲ)軸が範囲の真ん中より右
3.上に凸で最小値
ⅰ)軸が範囲の真ん中より左、ⅱ)軸が範囲の真ん中と一致、ⅲ)軸が範囲の真ん中より右
4.上に凸で最大値
ⅰ)軸が範囲の左、ⅱ)軸が範囲の中、ⅲ)軸が範囲の右
これらの場合分けの4パターンは覚えるというよりは、実際に3つの線と放物線をかいてみて理解するとよいでしょう。
③二次関数の決定で使う3つの式
④二次方程式の解の公式と判別式
ⅰ)判別式が正のとき、異なる実数解が2つ
ⅱ)判別式が0のとき、実数解が1つ(重解)
ⅲ)判別式が負のとき、実数解はない(異なる虚数解が2つ)
⑤二次不等式の解法
ⅰ)左辺を因数分解できるときは因数分解する。因数分解できないときは、左辺=0の方程式を解の公式を利用して解く。
ⅱ)y=(左辺)のグラフがx軸よりも上か下かを考える。
⑥二次関数のグラフとx軸の交点の位置の問題で考えるべき3つの条件
ⅰ)判別式
ⅱ)軸
ⅲ)端点のy座標
(7)三角比
①直角三角形と三角比
②三角比の相互関係の3つの式
③180°-θ、90°-θ、90°+θの三角比
④正弦定理
⑤余弦定理
⑥三角形の面積の公式2つ
※問題文に「外接円の半径」と書いてあれば正弦定理、「内接円の半径」と書いてあれば三角形の面積の公式を使いましょう。
(8)データ分析
①四分位数
→データを小さい順に並べたときに4等分する位置にくる3つの値のこと
→小さい方から第1四分位数(Q₁)、第2四分位数(Q₂)、第3四分位数(Q₃)という。第2四分位数は中央値となる。
※四分位数の求め方
ⅰ)Q₂(中央値)を求める
ⅱ)Q₂を境目にして、下組と上組に分ける
ⅲ)下組の中央値がQ₁、上組の中央値がQ₃となる
②四分位範囲
Q₃-Q₁
③四分位偏差
※四分位偏差が大きい方がデータの散らばりが大きくなる。
④箱ひげ図
⑤平均
⑥分散
⑦標準偏差
⑧共分散
⑨相関係数
※表を用いた相関係数の求め方
⑩変量の変換
数学A
(1)順列と組み合わせ
→順列と組み合わせ(数学A)の解説・授業・公式・演習問題一覧
①Pの定義:n個のうちからr個を選び並べるときの並べ方
②Cの定義:n個のうちからr個選ぶときの選び方
③円順列
④じゅず順列
⑤重複順列
⑥同じものを含む順列
⑦余事象を使うとき
→「~ない」「少なくとも~」などが問題文に書いてあるとき
(2)確率
①確率の定義
②反復試行の確率
③条件付き確率
※PA(B)は「AのときのBの確率」と読む。P(A∩B)は「AかつBの確率」と読む。
(3)図形
①重心
→定義:中線(三角形の頂点とその対辺の中点を結んだ直線)の交点
②外心
→定義:各辺の垂直二等分線の交点
③内心
→定義:角の二等分線の交点
④垂心
→定義:垂線(頂点から対辺に垂直に下した線)の交点
⑤三角形の角の二等分線の性質
⑥チェバ・メネラウスの定理
⑦円周角の定理
⑧円と接線
⑨円に内接する四角形
⑩接弦定理
⑪方べきの定理
⑫オイラーの多面体定理
(4)整数
①倍数の判定法
・2の倍数……一の位が偶数
・3の倍数……各位の数の和が3の倍数
・4の倍数……下2桁が4の倍数
・5の倍数……一の位が0か5
・9の倍数……各位の数の和が9の倍数
②正の約数の個数と総和
③最大公約数と最小公倍数の関係
④有限小数となる条件
⑤n進法の原理
数学Ⅱ
(1)式と証明
①二項定理
②相加平均・相乗平均の大小関係
※(a+b)/2のことを相加平均、√abのことを相乗平均という。
(2)複素数と方程式
①解と係数の関係
②剰余の定理:整式P(x)を1次式x-aで割ったときの余りはP(a)
③因数定理:1次式x-aが整式P(x)の因数である⇔P(a)=0
④知っておきたい式変形
(3)図形と方程式(点と直線)
①2点間の距離
②中点
③内分点
④外分点
⑤重心
⑥直線の方程式
※直線の方程式は、ⅰ)傾きとⅱ)通る点の2つが分かれば求められる。
⑦2直線が平行
傾きが一致する ⇔ m=m’
⑧2直線が垂直
傾きの積が-1 ⇔ m・m’=-1
⑨点と直線の距離
※点と直線の距離を求めるときは、直線の方程式をax+by+c=0の形に変形しよう。
⑩直線に対称な点
☆点Aと点Bが直線ℓに関して対称なとき
ⅰ)ABの中点がℓ上にある
ⅱ)ABとℓが垂直 ⇔ (ABの傾き)・(ℓの傾き)=-1
(4)図形と方程式(円)
①円の方程式
②円と直線の共有点の個数
☆求める手順1
ⅰ)円の方程式と直線の方程式を連立させる。
ⅱ)ⅰ)でyを消去すればxの二次方程式となるので、その二次方程式の判別式Dを利用する。
ⅲ)D>0 ⇔ 共有点2個
D=0 ⇔ 共有点1個(接する)
D<0 ⇔ 共有点0個
☆求める手順2
ⅰ)円の中心と直線の距離dを求める。
ⅱ)dと半径rの関係を調べる。
ⅲ)d<r ⇔ 共有点2個
d=r ⇔ 共有点1個(接する)
d>r ⇔ 共有点0個
③円の接線の公式
④2つの円の位置関係
⑤2曲線の交点を通る曲線の方程式:kf(x, y)+g(x, y)=0
→2曲線の交点を通る曲線の方程式kf(x, y)+g(x, y)=0の使い方と原理解説授業
(5)三角関数
①弧度法
※θの単位はrad(ラジアン)
②おうぎ形の面積
※θの単位はrad(ラジアン)
③三角関数の性質(θ+2π、-θ、π+θ、π-θ、π/2+θ、π/2-θ)
④加法定理
⑤2倍角の公式
⑥半角の公式
⑦積和の公式
⑧和積の公式
⑨三角関数の合成
(6)指数
①指数法則
(7)対数
①対数の定義
②対数の計算公式4つ
(8)微分
①微分係数の定義
②導関数の定義
③接線の方程式
④法線の方程式
(9)積分
①積分による面積
②⅙公式
数学B
(1)平面ベクトル
①始点をそろえる
②単位ベクトル
③ベクトルの平行条件
④3点が一直線上にある条件
⑤ベクトルの成分
⑥内積
ⅰ)内積の定義
ⅱ)成分による内積
⑦ベクトルの垂直条件
⑧位置ベクトルの定義
⑨内分の位置ベクトル
⑩外分の位置ベクトル
⑪中点の位置ベクトル
⑫重心の位置ベクトル
⑬ベクトルを使った三角形の面積の公式
(2)ベクトル方程式
①直線のベクトル方程式3パターン
②円のベクトル方程式2パターン
③終点の存在範囲基本4パターン
(3)空間ベクトル
☆基本は平面ベクトルと同じ。成分が3つに増えただけだと考えよう。
①共面条件(4点が同一平面上にある条件)
(4)数列
①等差数列
②等比数列
③Σの定義
④Σの計算
⑤階差数列
⑥数列の和から一般項を求める
⑦分母に積の形がある分数の数列の和
→部分分数分解
※部分分数分解のやり方はこちら→部分分数分解のやり方
⑧(等差数列)×(等比数列)の和
→公比をかけて、ずらして引く
(5)数学的帰納法
①等式
→数学的帰納法の分かりやすい答案の書き方(等式バージョン)解説授業
②不等式
→数学的帰納法の分かりやすい答案の書き方(不等式バージョン)解説授業
(6)漸化式
【基本の漸化式】
①等差数列の漸化式
②等比数列の漸化式
【漸化式の基本パターン】
①特性方程式を利用して解く漸化式
②n乗の項を含む漸化式
③分母と分子にanを含む漸化式
④anan+1を含む漸化式
⑤anにルートや指数がついている漸化式
⑥和の式が与えられている漸化式
⑦階差数列の公式を利用して解く漸化式
⑧an+1=pan+f(n)
【漸化式の応用パターン】
①隣接3項間漸化式
②一般項を予想して数学的帰納法で証明するパターン
→一般項を予想して数学的帰納法で証明するパターンの漸化式解説授業
数学Ⅲ
(1)複素数平面
①基本公式
②回転移動
③ド・モアブルの定理
④複素数の相等
⑤n乗根
⑥複素平面における図形
(2)二次曲線
①放物線
②楕円
③双曲線
④接線の方程式
(3)数列の極限
①極限があるとは
②極限の不定形
③はさみうちの原理
④追い出しの原理
⑤商の極限
⑥無限等比数列
⑦無限級数
⑧無限等比級数
(4)関数の極限
①片側極限
②はさみうちの原理
③三角関数の極限
④自然対数の底e
※これが自然対数の底eの定義。以下の3つの式はこれを用いて導かれる。
⑤関数の連続性
⑥中間値の定理
(5)微分公式
①xαの微分
※αは実数で成り立つ(負の数でも、分数でも、無理数でも成り立つ)。
②積の微分
③商の微分
④三角関数の微分
⑤指数関数の微分
⑥対数関数の微分
⑦合成関数の微分
⑧逆関数の微分
⑨対数微分法
【手順】
- 両辺が正であることを確認する。正であることを確認できない場合は、両辺に絶対値をつける。(対数の真数は正でないといけないので)
- 両辺の自然対数をとる。
- 両辺をxで微分する。(logy)’=y’/yであることに注意(合成関数の微分)。
- 両辺にyをかけて、y’=の形にする。yに元の式を代入するのを忘れないように!
【使いどころ】
- 累乗の積や商で表された関数の微分
- (xの式)xの式のように指数で困ったとき
※対数にすることで、積が和に、商は差に、p乗はp倍にすることができることを利用する。対数の公式についてはこちら→対数公式
(6)微分法の応用
①接線の方程式
②法線の方程式
※法線とは……点Pにおける法線とは、点Pを通り、Pにおける接線と垂直に交わる直線のこと
③平均値の定理
④関数の増減
⑤関数の凹凸
⑥関数の極大値と極小値
⑦媒介変数で表された関数の微分
⑧漸近線
⑨微分可能性
(7)積分公式
①整式の不定積分
②三角関数の不定積分
③指数関数の不定積分
④置換積分法
⑤特殊な置換を使って求める不定積分
※公式として覚えてしまおう。
⑥部分積分法
※積分する関数が異なる関数の積の形となっているときに用いることが多い。
※微分すると簡単になるものをf(x)、指数関数や三角関数など(微分してもあまり形が変わらないもの)をg(x)とするとやりやすくなることが多い。