サイトアイコン 大学受験の王道

不等式の証明(微分の利用)

(1)例題

x>0のとき、
x3+16≧12x
が成り立つことを証明せよ。

(2)例題の答案

f(x)=x3-12x+16とすると
f'(x)=3x2-12=3(x+2)(x-2)
f'(x)=0とすると、x=±2
よって、x=0におけるf(x)の増減表は下のようになる。

x02
f'(x)0+
f(x)0

ゆえに、x>0のとき、f(x)は
x=2で最小値0をとる。
よって、x>0のときf(x)≧0
したがって、x3+16≧12x

(3)解法のポイント

まず不等式の証明の基本として、
(左辺)-(右辺)
を考えましょう。

また、不等式の証明をする際の式変形の方針は4つあります。
ⅰ)因数分解
ⅱ)平方完成
ⅲ)相加平均・相乗平均の大小関係
ⅳ)微分して増減表をかく

今回は、ⅳを利用します。

ⅳの流れとして、
①f(x)=(左辺)-(右辺)とおく。
②f(x)の増減表をかく
③xの範囲におけるf(x)の最小値を確認する
④xの範囲におけるf(x)の最小値が0以上(0より大きい)であれば証明完了

という流れになります。

(4)理解すべきこと

導関数とは何かを理解しましょう→導関数とは何か(導関数と微分係数を区別しよう、導関数と関数の増減との関係、増減表の正しい作り方)

☆動画はこちら↓

モバイルバージョンを終了